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Comprehensive seismic performance assessment testing

Part 19. A study on Equivalent Damping Factor
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Comprehensive seismic performance assessment testing
Part 20 ESDOF system estimation for 10-story steel and RC test structures
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Shake-table test
S,-S4 curve

RC frame structure
Vibration mode

Steel frame structure
ESDOF system

1. Introduction

In 2015, a series of shake-table tests were conducted at E-
Defense on a 10-story reinforced concrete building with the same
dimensions as the 10-story steel test specimen tested in 2023 (see
Fig. [1]). The seismic design methods and selection of earthquake
ground motions were identical to those utilized in 10-story steel
specimen, following Part 10-12 and reference 1. This paper
compares the seismic performance of the aforementioned 10-
story steel frame (SF) and reinforced concrete frame (RCF) using
the equivalent single-degree-of-freedom (ESDOF) system. The
natural vibration modes as well as the representative acceleration

and displacement are investigated.

2. Natural vibration mode shapes

The 10-story RC specimen with a fixed foundation was used
for comparison with the steel specimen. The 10-story SF and RCF
structures were converted to a ESDOF system using the method
described in Part 18. Fig. 2 shows the first and second natural
vibration mode shapes extracted from the experimental data
during JMA Kobe 25%, 50%, and 100% excitations. For the 1st

RF RF RF
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9F 9F 9F
8F 8F 8F
g TF 5 TF g TF
3 6F 35 6F S 6F
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Ou e Ou
(a) First mode (NS-direction)
RF RF
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(c) First mode (EW-direction)
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mode shape, the evaluations of SF and RC were almost the same
in the NS-direction, while the differences were shown in the EW-
direction. The deformation distribution was more uniform at the
upper and lower stories for SF structure. Figs. 2(b) and 2(d) show
that for the second mode shape, SF and RC were evaluated
differently in both NS and EW-directions. RC had larger values
in the NS-direction and smaller values in the EW-direction, but
larger values developed during 100% excitation.

Floor

4F rKobe 100%
F .

el Bu
(b) Second mode (NS-direction)
RF RF
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(d) Second mode (EW-direction)

Fig. 2 Mode shape evaluation (JMA Kobe 25%, 50%, and 100% excitations)

EFER T VL AE R M/ FE5R
FD20 10JF S ERBVEE & 10 8 RC &S #H O 25
1 B H RS

w e, RIL i, & FHE,
mA R, IR mth, % R,
FRIEUE, FH BT, POk, R i



3. Representative acceleration and displacement

The proportion of effective mass to total mass for the 1st and
2nd modes is shown in Fig. 3, with the 1st mode accounting for
about 80% and the 2nd mode for about 10% of the total mass for
all excitations. The effective mass ratio of the 1st and 2nd modes
of SF was slightly larger than that of RCF. Fig. 4 shows the
effective period for the 1st and 2nd modes. For the NS-direction,
SF had a greater effective period, while for the EW-direction,
RCF exhibited a larger period. It is suspected that RCF was
configured with wall structure in the NS-direction, while SF was
configured with buckling-restrained braces in the EW-direction,
resulting in a difference in stiffness between the two directions.

Fig. 5 shows the time history of the representative acceleration
S, for the 1st and 2nd modes during JMA Kobe 50% excitation.
The trends of S, amplitudes were the same for SF in the NS and
EW-directions, but different for RCF. The representative
acceleration versus representative displacement as well as S-Sy
spectra based on ground motion inputs are superimposed in Fig.
6, and the peak history in the NS and EW-directions corresponded

NS-direction EW-direction
- -
g g
- 208
3 ]
£ E0.6
o o
Z =
2 504
= Z02
0

100%

25%
JMA Kobe ground motion

Fig. 3 Effective mass ratio
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to the S,-Sy spectra. In the NS-direction, SF had larger peaks
representative acceleration and displacement values. In the EW-
direction, for the 1st mode, SF exhibited a larger peak
representative displacement and smaller peak acceleration.
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Fig. 5 Representative acceleration time history (JMA Kobe 50%)

4. Conclusion

The global seismic performance of the 10-story steel frame
(SF) and RC frame (RCF) structures was compared by using the
ESDOF system.
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Comprehensive seismic performance assessment testing

Part 22: Experimental response of internal panel zones, beams and columns
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1. Introduction

Shake-table test on a 10-story steel moment-resisting
frame with BRB bracing was conducted at E-Defense. This
paper reports the measured responses of Column 2C at the 3rd
story, and the panels and beams at the 3rd and 4th floors under
the 50% and 100% excitations. Fig. 1 shows the instrumented

components.

2. Response of panel zones

The column had BRBs connected in the EW direction and
not in the NS direction. In exaimining the column panels, the
presence of the BRB gusset plate connection was accounted
for using the free-bodies shown in Fig. 2. The BRB was
assumed to deliver axial force only. At the face of the column,
linear normal stress and uniform shear stress distribution was
assumed. The shear force acting in the panel zone was deduced
accordingly based on equilibrium. The shear force at the top
and bottom ends of the panel thus calculated was nearly equal.
The shear deformation was defined as the change of the
distance between upper and lower diaphragms devided by the
panel zone height in the corresponding direction.

Fig. 3 shows the shear force versus shear deformation of
the panel zones at the 3rd and 4th floors of column 2C. Both
the EW and NS responses are shown. During the 50%
excitation, both panels remained elastic in the EW direction
but yielded slightly in the NS direction. The elastic stiffness
agreed with the expected value based on the Japanese
provisions!. Therefore, the shear force deduced from the
above mentioned procedure seemed to be reasonable. During
the 100% excitation, both panels yielded in both directions. In
particular, the panels developed a shear angle of 0.01 rad in
the NS direction. At the end of the excitation, residual
deformation on the order of 0.002 rad remained in both

directions at both panels.

3. Response of beams
Fig. 4 shows the moment versus rotation of the 4 beams
shown in Fig. 1 during the 100% excitation. Rotation was

measured within 730 mm from the column face for the EW
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direction and 500 mm for the NS direction, which equaled
730/3750 and 500/2800, respectively, of the clear span. All beams
remained elastic. The measured elastic stiffness agreed with the
theoretical stiffness except for beam B2 presumably because the

BRB gusset plate contributed to stiffness of this beam.
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Fig. 4 Bending moment vs rotation: (a) Beam end B1;
(b) Beam end B2; (c) Beam end B3; (d) Beam end B4

4. Response of column

Fig. 5 shows the axial force and elongation during the 100%
excitation. The sign is negative when the column subjected to
compression. The compression caused by gravity was estimated
based on tributary area. The maximum axial force was -0.28 times
axial yield force, and the maximum axial strain was -0.83 x 10~

Fig. 6 shows, for the same column, the interaction between the
axial force and biaxial bending moments during the 100%
excitation. The interaction diagrams are shown for the top and
bottom sections indicated in Fig. 1. Figs. 6(c) and (d) show the

theoretical plastic limit

0.2
computed for a constant
axial force equal to 0
gravity effect. While the 2

Q,

fluctuation in axial force E 0.2
was small, the column 4
yielded at both top and
bottom due to biaxial 0.6 '

-18 0.9 0 0.9
bending.  After the Axial strain [x107]
excitation, little residual . w 7 g

J [mm]

forces remained in this Fig. 5 Axial force ratio vs axial

column. deformation of column 2C

As reported in Part 12, the 3rd story developed a maximum
story drift ratio of 0.020 and 0.017 rad in the EW and NS
directions, respectively. The member responses described herein
clarifies that the panel zones yielded in shear and the column
yielded in biaxial bending, while the beam remained elastic. This
response agreed with fundamental design calculation that the

internal joints were proportioned as weak column-strong beam.

5. Conclusion

The experimental response of the internal panel zones, beams,
and column were presented. During the 100% excitation, the
panel zones and column yielded while the beams surrounding the
panels remained elastic. Rare data was obtained on the behavior
of column panels under biaxial bending plus compression, and
with a gusset plate attached.
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Comprehensive seismic performance assessment testing
Part 23 Seismic performance of buckling-restrained braces in 10-story steel test specimen
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Shake-table test

Energy dissipation  Story shear ratio

Steel frame

Seismic performance

1. Introduction

A series of shake-table tests on a 10-story steel frame with
buckling-restrained braces (BRBs) were conducted at E-Defense
in 2023. This paper reports the measured behavior of the BRBs
as well as their cumulative energy dissipation and story energy

dissipation ratio.

2. Hysteresis behavior of BRB

The BRB is illustrated in Fig. 1. The effective stiffness K. of
the BRB and the nominal yield strength F, of the steel core are
estimated as follows":

‘- EAjAA, o
¢ T WAL+ 24, ALy + L) + 24;Ac (L + Ley)
E, = A.f, 2)

Where: E and f, are the elastic modulus and nominal yield stress
of the BRB core plate material; L;, L;, L. and A4;, A;, A. are the
lengths and cross-sectional areas of the connection, transition,

and yielding segments, respectively.

| pr |
\ L DTN Le DL Ljr \
I T T 1
: A, :
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A © 0
Work point Steel core plate Work point
‘ >t K : K |
Connection  Transition Yielding Transition ~ Connection

segment segment segment segment segment

Fig.1 Configuration of the BRB

The BRBs were placed in the EW (longer) direction. Six BRBs,
designated by the adjacent column (2B, 2C, 3B, 3C shown in Fig.
2[a]) and story (1, 3, and 4th), were instrumented. Fig. 2(b)
illustrates the instrumentation scheme for axial deformation and
axial force.

The axial force versus axial deformation response of the BRBs
under JIMA Kobe 25% and 100% excitations is shown in Fig. 3(a).
During 25% excitation, all BRBs in the 1st to 4th stories remained
elastic. The elastic stiffness was close to the value computed by
Eq. (1). During 50% excitation, the yield strength computed by
Eq. (2) was exceeded. During 100% excitation, the BRB
deformation recorded 25 mm at the 3rd story, when a maximum
story drift ratio of 0.020 rad developed.

Buckling-restrained brace
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4S and 2C-18 after the test

specimen was reconfigured
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at the 1st and 4th stories
developed more significant

deformation than they did Umt mm
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Fig. 3 Hysteresis behavior of BRBs

3. Energy dissipation capacity
Fig. 4 presents the cumulative dissipated energy of the BRBs
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at the 1st to 4th stories, represented by BRBs at 2C. During 25%
to 100% excitations, 2C-3S dissipated the most energy, 1.2 times
as much as 2C-1S and 1.6 times as much as 2C-4S, respectively.
On the other hand, after the specimen was reconfigured by
removing the BRBs at the 3rd story, the energy dissipated by 2C-
1S was almost unchanged at the same 75% excitation, while 2C-
4S dissipated more energy, 1.2 times more than the original. It
was observed that 2C-1S and 2C-4S dissipated an equal amount
of energy during 25% to 75% excitations.
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Before 3S BRBs removed

100

= Kobe 100% | =
£ ; ZE 80
Z L
4 =4 60
e B T 7 S e >
i ; E5 40 Kobe 75%-2
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20 = 20
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0 40 80 120 160 0 40 80
Time (s) Time (s)
Fig. 4 Cumulative dissipated energy of BRBs (2C)

4. Story shear force and shear ratio

Fig. 5 compares, for the 3rd story, the story shear force
calculated from strain gauges against the same force calculated
from accelerometers placed on the floor slab. The former took the
sum of column shear forces and BRB forces while the latter took
the sum of inertia from all stories above. The latter was slightly
larger, which is expected because the latter includes damping
while the former does not. However, the difference was small.
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Fig. 5 Story shear force comparison of the 3rd story

Fig. 6 shows the proportion of story shear resisted by the BRBs
evaluated for 25% to 100% excitations at the time instant when
the net shear resistance by the BRBs recorded a maximum value.
During 25% excitation, the BRBs were approaching their yield
strength but the columns remained elastic, so the column shear

accounted for a relatively small proportion; however, for 50%
excitation and above, the BRBs had reached their yield strength
and consequently, the proportion resisted by the columns
increased somewhat. The maximum shear ratio of BRB at the 3th
story was in the range of 20% to 40%, which was slightly higher
than the preliminary simulation results in 2D?. The bidirectional
response led to smaller resistance of the columns than in

numerical simulation.

5. Story energy dissipation ratio

The proportion of story energy dissipated by the BRB in the
3th story under 50% to 100% excitations is illustrated in Fig. 7.
The proportion dissipated by the BRB increased as excitation
magnified from 50% to 75%, but reduced between 75% and 100%
excitation. In this test, the energy dissipation ratio of BRB for the
3th story was in the range of 35% to 45%.
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Fig. 6 Story shear ratio Fig. 7 Dissipation energy ratio

6. Conclusion

This paper presented the seismic performance of the BRBs in
the E-Defense 10-story steel test specimen, including hysteresis
and cumulative energy dissipation. The BRBs yielded during
50% excitation, and the proportion of story shear resisted by the
BRB gradually decreased with increasing seismic intensity. The
contribution of the BRBs to story shear and energy dissipation
was 20%-40% and 35%-45%, respectively. The performance of
the BRBs was excellent.
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Comprehensive seismic performance assessment testing
Part 24 Strain measurement of structures using fiber optic strain sensors
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1. Introduction

In recent years, new strain measurement technology has been
developed for using fiber optic strain sensors that provide
continuous, high-resolution measurement of strain along the
entire length of the sensor. In the shaking table tests on a 10-story
steel frame conducted at E-Defense in 2023, fiber optic strain
sensors were used to examine the strain for observing and
analyzing the seismic performance of the structural components.
This paper briefly introduces the outline and experiment results
by using fiber optic strain sensors.

2. Optical fiber measurement
High-Definition Fiber Optic Strain Sensors and an ODiSI 6000
Series Data Processor which could map the contour of strain for

a structure under the test of a process in real-time developed by
LUNA, USA were used in this measurement. Fig. 1 shows the

setting location of five optical fibers in which the position mark
] ) . . (d) 3F 2D panel zone (e) 3F 2D - 3D beam
is following Part 10. The fiber optic strain sensors at the first story

2C column and second story 2D column were arranged in the Fig.1 Fiber optic strain sensor setting
middle and edges of four faces as shown in Fig. 1(a) and (b),
respectively. Fig. 1(c) shows the fiber optic strain sensor on the

3F 2C-3D slab was arranged at the center area between the 2C,

3C, 2D and 3D columns. The fiber optic strain sensor of panel

zone was placed on the outside of each face and on the inside near

(a) Location of fiber optic strain sensor

the beam web, as shown in Fig. 1(d). For the 3F 2D-3D beam, the £ ol Beanend “e“I’CZDﬁ Aad A A I 422::‘3: 2]
fiber optic strain sensor was located at the top flange surface, the §~m§ - Myesriay |
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was found that the neutral axis of the composite beam end section
was between 1/3 of the beam height from the top flange to the top
flange due to the influence of the floor slab.
3.2 Maximum Strain distribution along beam

As can be seen in Fig. 2, the strain reached the maximum value
at the beam end section near 3D at 9.04s. The strain distribution
at the beam end section and in the 1/3 of the beam section at 9.04s
is shown in Fig. 3. It should be noted that the neutral axis of the
beam end section near 3D was closer to the top flange than the
beam end section near 2D. From the results of 1/3 of the beam, it
could be observed that the neutral axis was higher in the middle
section of the beam than in the end section. The strain distribution
along the beam when the strain reaches the maximum value
(9.04s in Fig. 2) at the top flange, 1/3 and 2/3 of the beam height
and at the bottom flange of the beam is shown in Fig. 4. The
locations of the strains which looked strange could be neglected,
because there were many obstacles at the surface of the beam and
the fiber optic strain sensor had to avoid these obstacles, such as
the hook on the bottom flange shown in Fig. 4. The strain
distribution of the bottom flange along the beam axis was closed
to a straight line. However, from the result of the strain
distribution of the top flange, it was clear that the stiffness of the
middle part of the composite beam was greater than that of the
end part. It could be confirmed that the variation of the position
of the neutral axis along the beam direction mainly depended on
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Fig.3 Strain distribution of each section
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Fig.4 Strain distribution along the beam

the strain distribution in the top flange influenced by the floor slab
in this shaking table test. Besides, a FEM analysis is being
composed as shown in Fig. 5. In the future, the results using the
fiber optic strain sensor will be compared with the FEM analytical
results to develop a more accurate and detailed analytical model.
3.3 The distribution of the initial cracks on the floor slab

Fig. 6 shows the distribution of the initial cracks on the 3F 2D-
3D floor slab above the 2C-3D beam. It could be found that the
cracks extended from the end of the beam along the short side
toward the center, while there were almost no initial cracks in the
middle part of the floor slab. It was confirmed that the effect of
the floor slab on the middle part of the composite beam was more
significant than the stiffness of the end part. Besides, the effective
width of the slab will be analyzed in future.

4. Conclusion

In this paper, the strains of structural members measured by
fiber optic strain sensors were presented and the behavior of the
beam on the third floor under seismic action was analyzed by
observing the strain distribution of the beam.
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